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An open loop optimal control algorithm is developed for
general flexible structures, bascd on Laplace transform
mcthods. A distributed paramcter model of the structure is first
presented, followed by a derivation of the optimal control
algorithm. The control inpuls are expressed in terms of their
Fourier series expansions, so that a numerical solution can be
casily obtained. The algorithm deals dircctly with the
transcendental transfer functions from control inputs to outputs
of interest, and structural deformation penaltics, as well as
penalties on control effort, arc included in the formulation. The
algorithm is applicd to several structurcs of increasing
complexity to demonstrate its gencralily,

ey

The control of large flexible structures has become an
important issue in recent years, primarily in the acrospace
industry.! As larger structures continue 1o be deployed in
space, the effects of control-structure interaction are becoming
increasingly important. For example, stringent pointing
requircments for space-bascd antennae make it nccessary to
isolate and suppress unwanted structural vibration caused by
both slewing mancuvers and exogenous disturbances.
Consequently, it becomes necessary to model structural
flexibility when developing control laws for these types of
structurcs.

Because disturbances and control forces generally act at
discrete points on the structure, structural responses terd to
cxhibit wave propagation characleristics. Traditional finite
element codes are unable to capture the high frequency behavior
of such structures, due primarily to the spatial discretization
associated with lumped parameter models. This limitation
makes it particularly difficult to study the propagation of
flexural waves within structures, since an extremely fine
discrelization is required to preserve the local wave-like
characteristics of the disturbances. To overcome this problem,
this paper develops a distributed parameter, systeni-based
model, which deals direcily with the governing partial
differential equations that describe the structure.

Given the continuum model of a flexible structure, there
remains the issuc of identifying control methodologies that takc
advantage of the additional high frequency information
available therein. Tzafestas? develops a distributed parameter
analogue of the linear quadratic regulator theory. A distributed
parameter Riccati equation, expressed in terms of spatial
differcntial operators, is presented. Miller, Hall, and von
Flotow3 develop optimal control laws for power flow at
structural junctions based on a travelling wave approach. The
cffect of the localized controller is to modify the wave scatlering
malrix at the junction in a way that minimizes the power
flowing from the junction. MacMartin and 11all4 consider
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optimal control of power flow in uncertain structures based on
an H__ cost criterion. Closcd-loop stability is guaranteed by
minimizing the maximum power imparted to the structure over
all frequencies. The optimal distributed control of a rigid
spacecraft with flexible appendages is discussed by
Breakwell.d

Skaai® presents closed-form open loop optimal control
solutions for a simple structure. The cost function considered
has the form:

If

J { kju(1)2+ kzx}(x)?}dt

where u represents the control input, and k; and k7 are
constants. Terminal and integrated penalties on the structural
defoimalions are not permiitted. Rather, the terminal constraints
are adjoined to the cost function with Lagrange multiplicrs.

The exclusion of deformational penaltics makes it possibic to
derive analytical solutions for certain types of mancuvers.
Otherwise, the optimal conirol solution can, in general, only be
obtained by numerical methods.

J (H

Analytical results are available for only the simplest of
distributed parameter models, containing very few flexible
clements. More often, a complex structure, such as a truss
beam, is replaced by a single equivalent member in the
continuum model. Such an approximation is usually accurate at
low frequencies only. For general structures, the structural
responses must be caleulated numerically. The convolution
integral representation technique developed by Skaar is
generalized in this paper to handle arbitrary structural
configurations,

A review of the continuum modeling approach is
presented in section 2. The optimal control formulation is
developed in section 3. Several examples of this method,
applied to structures of increasing complexity, are then
presented in section 4. Conclusions and recommendations can
be found in scction 5.

2 STRUCTURAL_MODELING

2.1 Modcling_of Flexible Elements

Traditional approaches for modeling complex structures
have rclicd on finite clement modeling techniques. This
approach idealizes a structure as an assembly of many small
picces which are constrained to move together in a manner
consistent with the internal clastic behavior of the underlying
continuum model. These techniques are powerful and widely
used. However, they suffer from various modeling
idealizations which limit the accuracy of behavior predictions,
particularly for high frequency.

In order to better model the high frequency behavior of



clastic frame-like structures, a continuum approach is presented
in this paper which overcomes the conventional limitations of
traditional finite clement modeling techniques. The continuum
method (also known as the exact finite element, distributed
parameter, or dynamic stiffness method), deals directly with the
governing partial differential equations for the individual clastic
elements to eliminate the explicit time dependence in the
equations of motion. The Laplace transform is employed to
convert the governing partial differential equations into ordinary
differential equations in the spatial dimension. For common
element models (c.g., rods in torsion, Bernoulli-Euler beams in
bending), simple analytical solutions to these equations exist.
The resulting solutions are explicit functions of the gencrally
complex frequency parameter, s, which has been introduced
through the application of the Laplace transform technique.

As an example, consider the case of a rod in torsion,
shown in Fig. 1. The governing partial differential equation is

GIB"(x,1) + me20(x,t) = T(x,t) @

where 0 is the cross sectional angle of twist, GJ is the torsional
rigidity, m is the mass per unit length, r is the cross sectional
radius of gyration, { Y=0( )/0x, ( )=d( )/dt, and T is the
distributed torque. Applying the Laplace transform, we obtain

" 242
0'(x,8) + TGy Oxs) = 0 3)

where initial conditions and distributed forcing along the
clement have been temporarily neglected. The gencral solution
follows as:

2
B(x,s) = A(s) cos Px + B(s) sin Bx, P2 = _n(;g_ 52 @)

where the functions A(s) and B(s) depend on the constraints
imposed at the boundaries of the element. To simplify the
mathematical developments, a structural state vector is defined
for the elastic element as follows:

_ | 8(x,8)
¥xs) = [T(x,s)] )

where T represents the net torque resultant along the rod. With
knowledge of the state at one boundary of the element, it is then
possible to determine the state at any intemal location. A
frequency-dependant spatial ransition matrix is used to
propagate the system state to arbitrary clement locations. Its
transcendental elements can be thought of as spatially varying
transfer functions. For this example, the transition matrix can
be shown to be

1
cos Px Gip Sin Bx

D(x,5) = 6
- GIBsinPx cos Bx
and
Distributed
Torque
/ GJ,m,r constant
X
T0,s) ) ,s)

[ i -]

Fig. 1: Example of a distributed paramcier clement: a rod in torsion.

y(x,5) = ©(x,s5) y(0,s) )]

Alternatively, when the displacements at the boundaries are
known, they can be related to the forces. This is accomplished
by a dynamic stiffness matrix. Its name derives from the
stiffness matrix associated with the traditional finite clement
method. For the rod in torsion, this matrix is given by

¢ | cosPl -1
K(s) = Sinﬁll: 1 cosBJ ®

where 1is the length of the rod.

In addition to torsional rods, the formulation also
handles Euler beams in bending in two directions and axial
rods. Timoshenko beams can also be included as continuum
clements.

Because the continuum method treats cach elastic
member as a single clement, no spatial discretization is
required. This is in marked contrast with traditional finite
clement methods, where each element must be lumped into
several segments. As a result, the continuum model is valid at
all frequencies, insofar as the partial differential equation
represents the actual physical structure. In contrast, the spatial
discretization associated with the finite element approach creates
a computational burden for even the simplest of structurcs (cach
flexible element is typically broken down into more than ten
segments). This significant reduction in the number of discrete
modeling clements required makes the continuum method more
attractive from a computational point of view.

Another advantage to the frequency domain modeling
approach is the ease with which damping is incorporated into
the structural model. For internal damping (where energy is
dissipated as heat within the structural elements) the static
bending, axial or torsional stiffness is replaced by a complex
valued function of the complex frequency. The functional
relationship depends on the type of damping modeled. For
example, a fractional derivative damping model scales the static
stiffness by the square root of the complex frequency.” This
type of damping model is extremely difficult to implement in
lime domain formulations, and requires a knowledge of the
entire past history of the deformation of the structural element.
For external damping (where structural energy is dissipated to
the surroundings) the mass per unit length is replaced by a
frequency-dependant parameter.’

2.2 Asscmbly of Elements

The assembly of flexible elements into a complex
frame-like structure is accomplished using the method of
local/global coordinates,” which is implemented in most finite
element software. The structure to be modeled is divided into a
st of flexible clements and a set of rigid joints, which attach to
any number of flexible elements at their respective boundaries,
as shown in Fig. 2. External forces arc applicd at the joints
only, but the deformation of the structure is available at all
points. (The case of a concentrated force applied within a
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Element
Fig. 2: Gencric [rame-like structurc.
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flexible element is treated by breaking the member into two
continuous clements connected by a massless joint. Modeling
distributed forcing is somewhat more difficult.) Massive joints
are modeled by dynamic stiffness matrices as well, so that their
contribution to the structural response at all frequencies is
retained.

The topology of the structurc is given by a connectivity
matrix, which relates the local displacements of the structural
elements (both flexible and rigid) to a set of global
displacements which uniquely describe the location and
orientation of all joints in the structure. The applied forces at
the joints are defined in a dual manner, so that for every global
displacement there exists a global forcing input at the same
point and in the same direction. It is then a simple matter to
compute the dynamic stiffness matrix for the structure as a
whole at any given complex frequency. The individual
stiffness matrices are first arranged in a large block diagonal
matrix. This matrix is then post- and pre-multiplicd by the
connectivity matrix and its transpose, respectively, resulting in
the system dynamic stiffness matrix.

Because the dynamic stiffness matrix is transcendental
in nature, computing natural frequencies is not a simple matter
of solving an eigenvalue problem, as is the case for the finite
clement approach. Rather, the stiffncss matrix must be
computed at many frequencics in order to gradually converge
on each modal frequency. However, a powerful algorithm is
available which rapidly converges on these cigenfrequencies.8
The algorithm works {or undamped systems only, and
additional root-searching algorithms must be employed when
structural damping is modeled.”

The system dynamic stiffness matrix can be invericd, if
desired, yielding the dynamic flexibility matrix for the
structure. Its elenments can be thought of as transfer functions
from the joint forces to the joint displacements or as admittance
functions. This flexibility matrix, in conjunction with the
flexible element spatial transition matrices, enables the
straightforward calculation of the transfer function from any
joint force to any poiit on the structure.

23 luymsg L;mlagg Imuslggrm

In the frequency domain, the responses at various
locations within a linear elastic structure to multiple control
inputs are determined by exploiting the principle of
superposition. The set of responses, yi(s), are expresscd as

m
yi(s) = _Elgij(s) uj(s), i=1l,...r )]
J:

where gjj(s) is the transfer function from the j’th input, uj(s), 1o
the i’th output, yi(s). These equations can be expressed in
more compact form using matrix notation:

y(s) = G(s)u(s) (10)

The matrix G(s) is the glynamic flexibility matrix for the given
structure, or some partition of it, depending on the inputs and
outputs considered.

_ The time response vector corresponding to y(s) is
available via the inverse Laplace transform, given by

O+ joo
YO = 5 [y(s)estds an
[ ad

where the integration path is known as the Bromwich contour.?
For finite dimensional systems, a residual expansion is used in
lieu of Eq. (11) to compute the time responses analytically.
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The same can be done for distributed parameter systems, except
that the expansion has an infinite number of terms and must
therefore be truncated at some point. However, grealer
nuerical accuracy is possible by working with Eq. (11)
directly. The frequency domain response is tabulated for
values of complex frequency equally spaced along the
Bromwich contour, and a numerical procedure converts this
data into a response history evaluated at equal spaces in time.

Because this approach utilizes frequency domain
representations of the control inputs, it circumvents the
compultationally expensive calculation of convolution integrals.
Furthermore, signals that cannot be represented by finite
dimensional state space models are casily handled in the
frequency domain. For example, the implementation of a time
delay simply requires multiplication of the frequency domain
data by a suitable exponential of the complex frequency before
the inverse Laplace transform algorithm is invoked.
Implementing such a time delay on a modal basis requires a
truncated series cxpansion of the complex exponential (such as
a Padé approximation), with many terms needed to obtain an
accurate representation.

3. OPTIMAL CONTROL FORMULATION

With the continuum modeling approach described
above, it is possible to recast a class of optimal control
problems into a convenient form, from which optimal control
trajectories are easily calculated. This form is applicable to a
completely general frame-like structure (although applying this
method to structures containing plates and membranes is the
subject of current rescarch!l), with multiple control inputs and
multiple outputs. The class of problems discussed here are
fixed-time, linear quadratic, open loop control problems with
penalties on control effort, position and velocity of various
output points on the structure, and structural deformation.
Thus, the cost functional has the form

I = {y(p - yal Ty (o) - yal
t

+ [liyeo- ya"Qyo- vol v s R }a a2

where 11, Q and R are weighting matrices, and yq is the vector
of desired output values. Tt should be noted that yg represents
the physical output variables of interest, and is not related to the
outputs of some state variable representation of the system.

Traditionally, the dynamics of the system are adjoined
to this functional via a costate vector as differential equation
constraints. However, because the structural transfer functions
are transcendental and infinite dimensional, a finite dimensional
costate vector cannot be defined. Tzafestas2 succeeded in
identifying a distributed parameter optimal control solution
which incorporates an infinite dimensional costate. This
solution represents the distributed parameter analogue of the
Riccati differential equation for finite dimensional systems.
However, the method is not immediately applicable to complex
structures, where more than onc partial differential equation is
involved. Even the casc of a single beam in bending presents
considerable difficulty.12

One alternative to adjoining an infinite dimensional
costate is modal truncation. The high frequency modes of the
structure are simply ignored, and the dynamics of the structure
is approximated with a finite dimensional state space
realization. However, in order to take advantage of the
“exactness” of the continuum modeling approach, it scems
appropriate to avoid modal truncation altogether. Instead, we
express each response as the convolution of impulse responses
with control inputs. This yields for the cost function



k) T tr
J = ofcm-r)u(r)m-yd | [ Gurnu@dr- yg
1]
n
L T t
+ ()IG([—‘E)u(t)dt-yd Q| JGenumadr -y,
0
]

+u@®TRu@®pdt (3)

where G(t) is the matrix of impulse responses from each
control input to cach output, as defined in section 2.3. These
convolution integrals need not be computed directly, as they are
the inverse transforms of the appropriate transfer functions
muitiplied by the associated control inputs. Taking variations
in u, we arc left with an intcgral equation which, except for a
very small number of special cases, is difficult or impossible to
solve in closed form. It is therefore necessary to express the
control inputs as weighted sums of an appropriate sct of basis
functions which span the function space of allowable control
inputs. For fixed time problems, the Fourier series is a good
candidate, leading to

1
f(t)Tcl sin Rtg
T cos m/tr
u(t) = f(l? €2 = F([)Tc’ f() = : (14)
f(t)Tcm sin nmytg
cos nui/iy
where
f(t) 21
2
F(y = i .. , e=] . (15)
f(t) c'm

The cost functional now depends only upon a constant vector,
¢, representing the cocfficients in the Fourier series expansions
of the control inputs. The resulting cost functional is quadratic
in the coefficient vector, and the minimization problem is
straightforward, yiclding:

¢ = A'Byg (16)

where

tr
A = Yo uvap + [{ Yo QY@ + FORF@® Jdt (17)
0

(r
B =yu+ [{yo'Qla (18)
0

and .
Y@ = 6[ G F()de 19)

Once again, the convolution of impulsc responscs with basis
function inputs can be calculated via the inverse Laplace

transform:

Y@ty = LHG(5)F(s)) . 0

F34

Furthermore, these basis responses can be computed a priori,
provided that the forcing locations and structural deformation
penalty locations are known in advance. This makes it possibic
to try a large number of cost functionals without repeatedly
calculating the responses to basis inputs. It should be
x;]annncd that a large amount of memory is required to store
this data.

A unique advantage of this approach is that it readily
accommodates penaltics in higher derivatives of both control
effort and physical deformation. In the frequency domain,
differentiation merely requires multiplication of the data by the
Laplace transform variable. The inverse transformation will
then produce the derivative of the original signal. Higher order
derivatives arc obtained by multiplying by higher powers of the
complex frequency. Incorporating higher derivative penalties
in the traditional optimal control formulation is considerably
more difficult.

Special constraints on the control histories are treated by
adjoining the constraints via Lagrange multipliers. An example
is the requirement that the controls be continuous at the
beginning and end of the maneuver, This implics that the
controls go (o zero at the initial and final times. Two Lagrange
multipliers are therefore introduced for each control input.
Performing the minimization, we obtain

¢ A FO) Fap 7' Byy
M=t FOT 0 0 0 @2n
A2 Fapt 0 o 0

where A1 and A are Lagrange multiplier vectors corresponding
to the control constraints at the initial and final times,
respectively.

It should be noted that the only approximation in the
cntire development involves expressing the control inputs in
terms of the basis functions. The dynamics of the cntire
structure is accounted for, since the impulse responses are exact
(insofar as the original equations represent physical reality).
Also, the structural deformations are assumed to be small, so
that linearization does not introduce significant errors. Asa
result, large angle slew mancuvers are not included in this class
of problems. It is possible, however, to express structural
deformations with respect to a nominal condition during a large
angle slew, and then linearize about that reference.

It is important to note the difference between the
approximations made in the continuum approach and those
made in control systems based on finite clement models.
Typically, a finite element model is used to determine a
truncated state space realization of the system. The control
sysicm is then designed using standard methodologies, such as
lincar quadratic regulator (LQR) or H__ theory. The modeling
crror associated with modal truncation must then be considered
in assessing the performance of the system. In contrast to this,
the continuum approach retains all modes of the system and
therefore has no modeling crror associated with it, provided
that the original partial differential cquations represent the
physical system exactly. The only limitation to this approach is
therefore the number of basis functions chosen 10 represent the
control signals. Using the Fouricr serics expansion essentially
places a limit on the bandwidth of the control inputs. If the
bandwidth of the physical controls are known in advance, the
number of basis functions used in the calculations can be
adjusted accordingly. The resulting control history wouild then
indced be optimal for that set of physical controls.



4.1 Ripid Mass with Flexible Appendage

In an carlier analytical study by Skaard, the open loop
contro! of a rigid mass with a flexible appendage, shown in
Fig. 3, was studied. In his work, deformational penalties were
not incorporated into the cost function; rather, the terminal
conditions were adjoined to the cost functional as constraints.
Skaar derived analytical expressions for impulse responscs of
the simple mass/appendage structurc and thus obtained closed
form optimal control solutions for the structure. His approach
does not readily generalize for more complex structures. In
contrast, the formulation presented here readily generalizes for
realistic complex structures. Nevertheless, the mass/appendage
structure is used as a first example to validate the optimal
control formulation.

The mancuver involves translating the mass a distance
of 10 meters along the axis of the flexible appendage, bringing
it to rest with minimal residual encrgy and post-mancuver drift
after 20 seconds. The first case places terminal penaltics on the
final position and velocity of the rigid mass and on a point 4/5
of the length along the flexible appendage. A small penalty is
also placed on control rate, and 17 basis functions are uscd to
approximate the control input, The results, shown in Fig. 4,
indicate that the terminal conditions are matched, and residual
energy is minimized. The second case places additional
terminal penaltics on points along the flexible appendage, as
well as en-route (integrated) penalties on structural deformation
at these points. As shown in Fig. 5, the magnitude of the
structural deformation during the mancuver is reduced slightly
(about 15%), and large deformation occurs over smaller
intervals of time, resulting in a lower RMS displacement of the
tip of the appendage over the mancuver interval. The terminal
conditions are again matched. In the final case, the member
stiffness is reduced by a factor of four, so that the primary
modal frequency of the structure corresponds approximately

X(t)

—1
o — B '

_ 1=05m
M =1 kg m = 2 kg/m
EA = 0.05 Nt

Fig. 3: Mass/llcxible appendage system.
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Fig. 4: Results of optimal mancuver of mass/ficxible appendage systcm
(casc #1): (a) control force applicd to rigid mass, (b) position of rigid mass,

(c) deformation of tip of flexible appendage with respect to position of
rigid mass.

with the frequency of the first basis function of the control
input. The results of this case, presented in Fig. 6, indicate that
the control input has been adjusted so that excitation of the
primary mode of the structure is suppressed, at the cxpense of
increased control effort. Again, the terminal conditions are
matched, and residual internal energy is minimal.

“onfigurati

A typical model for a spacecraft with flexible
appendages is the starfish configuration, shownin Fig. 7. It
consists of a rigid hub, to which four flexible anms are
attached. At the end of each arm is a rigid mass. Control
inputs are available at the hub and at the tips of two of the
flexible arms.

For this structural model, two maneuvers are presented.
The first is an in-planc translation of 0.1 meter in the direction
of one of the flexible appendages, with a final time of 5
seconds and all three control inputs available. Terminal
penalties are placed on the position and velocity of the hub, as
well as at three locations along the two arms whose axes lie in a
direction perpendicular to the motion. Itis anticipated that the
control forces will excite bending vibration in these
perpendicular members due to their inertia. Identical magnitude
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and velocity penaltics arc also placed on the three control
inputs. The results of this maneuver are shown in Fig. 8. The
forces provided by the thrusters at the two appendages are
identical (except for their sign) and differ slightly from the
control history of the thruster at the hub. This discrepancy
compensates for the incrtia of the fiexible arms, bringing the
system to the final desired state with minimal residual energy.

The second mancuver involves a small (0.1 radian)
counter-clockwise in-plane rotation about the hub in addition to
the translation of the previous mancuver, in order to
demonstrate the ability of the optimal control approach to
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Fig. 5: Results of optimal mancuver of mass/flexible appendage system
(casc #2): (a) control force applicd to rigid mass, (b) position of rigid mass,
(c) deformation of tip of flcxiblc appendage with respect Lo position of
rigid mass.
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Fig. 6 Results of optimal mancuver of mass/flexible appendage system
with reduced axial stiffncss (case #3): (a) control force applicd to rigid
mass, (b) position of rigid mass, (c) dcformation of tip of flexible
appendage with respect to position of rigid mass.

handle multiple final conditions. Here, only the lateral forces at
the tips of two of the appendages are available. Also, terminal
position and velocity penalties arc placed on two points along
all four arms, as well as on the central hub, and the final time
remains unchanged. The results are presented in Fig. 9.

Again, the incorporation of state penalties involving structural
deformation succeeds in minimizing residual intemnal energy at
the terminal time. As previously mentioned, the linear control
solution applied to this type of maneuver is only appropriate for
small rotations and angular rates. For large rotations, nonlincar
kinecmatics must be considered, whereas for large angular rates,
gyroscopic forces become significant.
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Fig. 8 Oplimal mancuvcr of starfish involving translation only: (a}
control forces applicd at hub (solid line). thruster #2 (dotied line), and
thruster #3 (double dotted linc), (b) position ol hub, (c) relative transverse
deflection of flexible arm associated with control #2.
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Fig. 9: Optimal mancuver of starfish involving translation and rolation:
(a) Control forces applicd to thruster #2 (solid linc) and thrusler #3 (dotted
line), () translation of central hub, (c) rotation of central hub.

4.3 SCOQLE S{ructure

The final example is a complex three dimensional
structure proposcd by NASA as a design challenge.}3 The
Spacecraft COntrol Laboratory Experiment, shown in Fig. 10,
counsists of a rigid shuttle and hexagonal truss antenna
connccted by a flexible mast. Previous authors have treated the
antenna as being rigid. In this paper, however, the flexibility
of the antenna is considered. Figure 11 shows the transfer
functions from a torque applied to the shutile along about the
axis of the mast to various points along the mast and antenna
for both the rigid and flexibie antenna models. A validation of
this structural model with a traditional finite element code is
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currently underway. As indicated in the figure, the flexibility
of the antenna has a considerable effect on the transfer
functions at higher frequencies. It is therefore appropriate to
include a dynamic model for the antenna when applying the
optimal control algorithm.
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Fig. 10: The SCOLE experiment: (a) Shuttle and flexible mast
propertics, (b) flcxible antcnna modcl uscd in this study.
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Fig. 11: Some Lransfer functions from control torque applicd to

shuttle along mast axis to incrtial accclerations al various points on
SCOLE structure for a rigid antcnna (solid lincs) and for a fexible antenna
(dotted lines): (a) torsion of midpoint of mast, (b) torsion of mast at
anlenna junction, (c) transverse deflection of mast in pitching direction at
anlcnna junction, (d) deflection, in planc of antcnna, of antcnna hub.

The SCOLE maneuver presented here consists of a 0.1
radian rotation about the z-axis of the shuttle. The three
dimensional model used in the optimal control formulation
incorporates 52 partial differential equations, which account for
axial, torsional, and bending vibration in the mast and each of
the twelve antenna elements. The shuttle is modeled as a
massive rigid body with six degrees of freedom. Torque
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controls directed along the z-axis are placed at cither end of the
mast. Due to the asymmetry of the structure, bending/torsion
coupling is expected. Conscquently, roll and pitch torque
controls are also located on the shuttle. In the cost functional,
equal magnitude and rate penatics arc placed on afl four
controls. Large terminal penalties arc applied to the roll, pitch
and yaw angles of the shuttie, as well as the torsional
deformation of the mast at its midpoint and at the mast/antenna
junction. The mancuver time is ten seconds.

The results of the SCOLE slew are shown in Fig. 12
Because of the conventions used in defining the axes at the
nodal points, the torques applied to the ends of the mast are
opposite in sign. The physical torques are, however, applied in
the same direction. From the figure, it is clear that, although
the shuttle has rotated the prescribed amount, there is a small
amount of residual torsional energy in the structure. This
encrgy is due primarily to the deformation of the antenna. Itis
expected that additional penaltics on structural deformation
placed at various poinis on the antenna will significantly reduce
this residual energy.

5, CONCLUSIONS

The open loop optimal control algorithm has been
demonstrated for several structural models. The generality of
the approach has been exploited in applying the algorithm to a
complex structure. Furthermore, the ability of this approach to
handle constraints and derivative penalties has been
demonstrated. One major issue concerning this open loop
method is modeling error. Because the approach presented is
open loop, this formulation makes no guarantees on the
performance of the actual structure, for which the mathematical
abstraction is only an approximation. The necessary sensitivity
analysis and closed loop formulations are topics of current
rescarch. It may also be possible to incorporate an adaptive
identification algorithm to adjust the model in such a way as to
minimize modeling error.

If the optimal control problem has an infinite time
horizon, it is possible to use a differcnt set of basis functions to
converge on a sotution. Candidate bases include Legendre and
Laguerre functions, which arc lincar combinations of
exponentials and other decaying functions.!4

A method for incorporating distributed penaltics into the
optimal control algorithm is one topic of current research.
Rather than penalizing certain points along a particular {lexible
clement, an integral over the entire clement, subject {0 somie

Torque (Nt-m x 10%)

on o 00

Time (sec)

un w0

@

339

w00 0

~1%0 0

Torque (Nt-m)

-308.0

-nao

0o 70 R e wo  ns  ws  we w0 oo
Time (sec)
v
2.200
asrs
e
b}
L]
:_-, °ns
c —e
Chika P
= S
2 oo /
/
o S/
aosa /
80 /"
/
oowﬂo v o (X ae wn uwo e "0 "o 00
Time (sec)
©
a0 -
V” .‘»
0.07% ’.’ ',.
0039 : “-‘
g
S FXH k
gom SN TN lr\k\.‘ /’\:,v."
©
- coon
o
o
0030
-oors s
Vﬂmba e 40 ‘o a0 oo no "o ”»e .y 00
Time (sec)
@
Fig. 12 Resuits of optimal SCOLE mancuver: (a) yaw torque

applicd to shutlle (solid linc) and masl/antenna junction (doticd line), (b)
roll torque (solid line) and pitch torque (dotied tinc) applicd to shultle, (c)
yaw rotation of shuttle, {d) relative torsional deflcction of mast at midpoint
(solid linc) and at mast/antenna junction (doticd linc).

weighting function, becomes part of the cost functional. Such
a capability would make it possible to develop controls that
minimize the total (kinctic plus potential) energy within the
structure in a continuous sense, rather than penalizing a large
number of points within cach flexible element.



Work is currently underway to extend the basic
modeling approach to continuous plate and membrane
elements. This capability will permit modeling and control
formulations for the NASA space station class of large space
structures.
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